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Abstract

We classify all of the 4-dimensional linear Poisson structures of which the corresponding Lie algebras can be considered as the
extension by a derivation of 3-dimensional unimodular Lie algebras. The affine Poisson structures on R3 are totally classified.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Linear Poisson structures are in one-to-one correspondence with Lie algebra structures and are usually called
Lie–Poisson structures, see [12] for more details. It is the most basic and important Poisson structure both for its
exquisite algebraic and geometric properties and for its far and wide applications in physics and other fields of
mathematics. In [8], the authors have classified linear Poisson structures on R3, i.e., give the classification of Lie
algebras on R3, see also [4] for more details which gives the classification of 3-dimensional Lie algebras on algebraic
closed field. The idea of using linear Poisson structures to understand the structures of Lie algebras can be traced
back to the work of Lie. In this spirit, there have been some suggestions for pursuing this geometric approach for Lie
algebra structures (e.g., see [1,3]).

A natural problem is to classify linear Poisson structures on R4. We find that any 4-dimensional Lie algebra is
the extension of some unimodular 3-dimensional Lie algebra by the viewpoint of Poisson geometry, so based on the
results of the classification of 3-dimensional Lie algebras in [8] and after the computation of cohomology groups,
linear Poisson structures on R4 are totally classified. Furthermore, as mentioned in [10], the affine Poisson structures
are in one-to-one correspondence with central extension of the corresponding Lie algebras and the affine Poisson
structures on R3 are totally classified. Finally, we give an example of Jacobi manifold of which the leaves enjoy
conformal symplectic structure.

The paper is organized as follows: In Section 2 we briefly review the decomposition of linear Poisson structures
on Rn that was done in [8] and concentrate on R3 and R4, obtain the result that any 4-dimensional Lie algebra is
the extension of some unimodular 3-dimensional Lie algebra. In Section 3 we list some useful results that related
with the classification of linear Poisson structures on R3 which will be used when we consider the classification of
Lie–Poisson structures on R4. In Section 4 we give a detail description of cohomology groups with coefficients in
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trivial representation and adjoint representation of 3-dimensional Lie algebras. In the last section we first consider all
possible extensions of 3-dimensional Lie algebras and then linear Poisson structures on R4 are totally classified. We
obtain the result of the classification of affine Poisson structures R3.

2. The decomposition of Lie–Poisson structures

In this section, we first review the decomposition of linear Poisson structures on Rn [8], motivation given in [9] and
based on this, we mainly concentrate on Lie–Poisson structures on R3 and R4. Consider Lie algebras corresponding
to them, we find that every 4-dimensional Lie algebra is the extension, central extension or extension by a derivation,
of some unimodular 3-dimensional Lie algebra.

Throughout the paper, g will be a n-dimensional Lie algebra and g∗ its dual space with Lie–Poisson structure πg

on it. e1, . . . , en are the basis of Lie algebra g, the corresponding coordinate functions are x1, . . . , xn and e1, . . . , en

are the dual basis of g∗, the corresponding coordinate functions are x1, . . . , xn . In [8], the authors have given the
decomposition of Lie–Poisson structures on Rn , let us recall them briefly.

Let Ω = dx1 ∧ dx2 · · · ∧ dxn be the canonical volume form on Rn . Then Ω induces an isomorphism Φ from the
space of all i-multiple vector fields to the space of all (n − i)-forms. Let d denote the usual exterior differential on
forms and

D = (−1)k+1Φ−1
◦ d ◦ Φ : X k(Rn) → X k−1(Rn),

its pull-back under the isomorphism Φ, where X k(Rn) denotes the space of all k-multiple vector fields on Rn . An
important property of D is that the Schouten bracket can be written in terms of this operator as follows [6]:

[U, V ] = D(U ∧ V )− D(U ) ∧ V − (−1)iU ∧ D(V ), (1)

for all U ∈ X i (Rn) and V ∈ X j (Rn). It is obvious that there is a one-to-one correspondence between matrices in
gl(n) and linear vector fields on Rn , i.e.,

A = (ai j )←→ Â =
∑

i j

ai j x j
∂

∂xi
, divΩ Â = D( Â) = tr A. (2)

Moreover, a vector k ∈ Rn corresponds to a constant vector field k̂ by translation on Rn and satisfies

divΩ k̂ = D(k̂) = 0, [ Â, k̂] = − Âk, ∀A ∈ gl(n). (3)

For a given Poisson tensor π , let D(π) be its modular vector field (see [11], which is also called the curl vector field
in [2]). Such a vector field is always compatible with π , i.e.,

L D(π)π = [D(π), π] = 0. (4)

A Poisson structure is called unimodular if D(π) = 0. For a linear Poisson structure π on Rn , there exists some
k ∈ Rn such that D(π) = k̂ and k is also called the modular vector of π . In fact k is always invariant if one takes
a different volume form. As mentioned in [11], k is the modular character of Lie algebra g which corresponds to the
linear Poisson structure defined as a vector in g∗ such that

〈k, ξ〉 = tr ◦ ad(ξ), ∀ξ ∈ g.

Theorem 2.1 ([8]). Any Lie–Poisson structure πg on g∗ ∼= Rn has a unique decomposition:

πg =
1

n − 1
Î ∧ k̂ + Λg, (5)

where k ∈ Rn is the modular vector of πg and Λg is a linear bi-vector field satisfying D(Λg) = 0 and ( 1
n−1 k̂,Λg) is

a Jacobi structure.
Conversely, any such pair satisfying the above compatibility conditions defines a Lie–Poisson structure by

Formula (5).

Remark 2.2. For more information about Jacobi structures, please see [5,7].
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Next we give some language of cohomology groups and extension of a Lie algebra which will be often used later
and then based on Theorem 2.1, we obtain the first result that every 4-dimensional Lie algebra is the extension of
some unimodular 3-dimensional Lie algebra.

Recall that for any Lie algebra g and its representation ρ : g −→ gl(V ) on a vector space V , we have the standard
Chevalley cochain complex Ck

= Hom(∧k g, V ) and the coboundary operator δk
: Ck
−→ Ck+1 is given by

(δ f )(ξ1, · · · , ξk+1) =

k+1∑
i=1

(−1)i (ρξ) f (ξ1, . . . , ξ̂i , . . . , ξk+1)

+

∑
i< j

(−1)i+ j f ([ξi , ξ j ], ξ1, . . . , ξ̂i , . . . , ξ̂ j , . . . , ξk+1), ∀ f ∈ Ck, ξ1, . . . , ξk+1 ∈ g.

In particular, δ0
: C0
= V −→ C1 is given by

δ0v(ξ) = (ρξ)(v), ∀v ∈ V, ξ ∈ g. (6)

There are two natural representations of g which are trivial representation on R and adjoint representation on itself.
The expression “h is the central extension of g by R” means that one has a well defined exact sequence of Lie

algebras

0 −→ R ι
−−−−→ h

κ
−−−−→ g −→ 0,

where ι(R) belongs to the center of h. This shows that h = g⊕ R as a vector space, and we must have

[ξ ⊕ t, η ⊕ s]h = [ξ, η] ⊕ ω(ξ, η),

where ω is a Chevalley–Eilenberg 2-cocycle of g. Furthermore, there is also a one-to-one correspondence between
affine Poisson structures (or modified Lie–Poisson structures) on g∗ and central extensions of g. See more details
in [10]. For convenience, denote by gω the extension of g decided by ω.

Given a 3-dimensional Lie algebra g with bracket [·, ·] and a derivation D, we can define a new 4-dimensional Lie
algebra as the extension of g by the derivation D (D-extension for convenience), denoted by gD , gD = g⊕ Re, with
bracket [·, e]D = D(·).

It is known that if ω1 − ω2 is exact, gω1 is isomorphic to gω2 . If D1 − D2 is exact, gD1 is isomorphic to gD2 .

Proposition 2.3. Any 4-dimensional Lie algebra is the extension, central extension or D-extension, of some
unimodular 3-dimensional Lie algebra.

Proof. As stated in the Theorem 2.1, the Lie–Poisson structure on g∗ has the decomposition πg =
1
3 Î ∧ k̂ +Λg. First

we consider the case that k = 0.
πg = Λg is the Lie–Poisson structure on g∗, so [Λg,Λg] = 0. Using Formula (1), we can easily get that

D(Λg ∧ Λg) = 0 and Λg ∧ Λg = 0.
Assume that

Λg =

4∑
i, j,k=1

Ck
i j xk ∂

∂x i ∧
∂

∂x j =

4∑
l=1

x lπl ,

where πl =
∑

i, j C l
i j

∂
∂x i ∧

∂
∂x j . We have

Λg ∧ Λg = 0⇐⇒ x lπl ∧ x lπl = 0⇐⇒ πl ∧ πh = 0,

for any l, h = 1, 2, 3, 4. So πl decides a 2-dimensional subspace Pl and Pl , Ph intersect a line. If there exists some
πl = 0 or some Pl which is the linear composition of the others, the problem is easier and we can omit them.

Then consider the lines which are the intersection of some two subspaces Pl and Ph , there may be three cases
below:

(1) There are two different subspaces at least and all the subspaces intersect only one line L;
(2) There are three linear independent lines L1, L2, L3;

(3) All Pl coincide.
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As in the Case (1), let L = Re4
= ∩Pl ∈ g∗ and π = X ∧ ∂

∂x4 for some linear vector field X on g∗. Denote
L0
= ker(e4) ⊂ g and so g = L0

⊕Re4. We will show that L0 is a 3-dimensional Abelian idea, and then follows that
Lie algebra g is the D-extension of 3-dimensional Abelian Lie algebra L0. For any ξ, η ∈ L0,

[ξ, η] = π(ξ, η) = X ∧
∂

∂x4 (ξ, η) = 0,

since 〈 ∂

∂x4 , ξ〉 = 〈 ∂

∂x4 , η〉 = 0. Furthermore we have 〈e4, [ξ, e4]〉 = 0 for any ξ ∈ g since D(π) = 0 and this implies
[ξ, e4] ∈ L0 and follows that L0 is the Abelian idea of Lie algebra g.

As in the Case (2), the three linear independent lines L1, L2, L3 expand a 3-dimensional subspace H and
H0
= ker(H) ∈ g is a 1-dimensional subspace of g. Let H0

= Re4 and choose a 3-dimensional subspace E of
g such that g = H0

⊕ E . We will show that e4 is the center of Lie algebra g and follows that g is the central extension
of Lie algebra E(mod e4). Let L1 = Re1, L2 = Re2, L3 = Re3, so

π =

4∑
k=1

(
Ck

12xk ∂

∂x1 ∧
∂

∂x2 + ck
13xk ∂

∂x1 ∧
∂

∂x3 + Ck
23xk ∂

∂x2 ∧
∂

∂x3

)
,

for some constants Ck
12, Ck

13, Ck
23. Obviously for any ξ ∈ E ,

[ξ, e4] = π(ξ, e4) = 0,

so e4 is the center of Lie algebra g.
As in the Case (3), choose a line L ∈ Pl and with the same method as in the Case (1), we can get the conclusion

that it is the D-extension of some 3-dimensional Abelian Lie algebra. In fact, it is a particular case of Case (1).
When D(π) = k 6= 0, k is the modular character of Lie algebra g defined as a vector in g∗ such that

〈k, ξ〉 = tr(ad(ξ)), ∀ξ ∈ g.

Let h = ker k, ∀ξ ∈ h, tr(ad(ξ)) = 0. h∗ = (ker k)∗ = g∗/Rk ⊂ g∗, the Lie–Poisson structure on h∗ is just the
reduction of Λg on h∗. ∀η ∈ g,

tr(ad([ξ, η])) = tr([ad(ξ), ad(η)]) = 0.

So h is the idea of the Lie algebra g, and Lie algebra g is D-extension of Lie algebra h.
It is evident that the Abelian Lie algebra and Lie algebra E(mod e4) is unimodular. The Lie–Poisson structure

associated with h is just the reduction of Λg on h∗, so h is unimodular. This completes the proof of the proposition. �

Remark 2.4. If the modular character k of the 4-dimension Lie algebra is (0, 0, 0, 1)T
∈ R4, we should consider the

D-extension of which the trace of the derivation D is not zero, since the modular character of gD is (0, 0, 0, tr(D))T .

So before we study the classification of linear Poisson structures on R4, we should first study the classification of
linear Poisson structures on R3 which is done in [8] and the cohomology groups of 3-dimensional Lie algebras with
coefficients in trivial representation and adjoint representation. This is shown the following two sections.

3. The classification of Lie–Poisson structures on R3

In this section, we list some useful results in [8] about the classification of Lie–Poisson structures on R3.
In [8], it is pointed out that Lie–Poisson structures πg on R3 are in one-to-one correspondence with compatible

pair (k, f ) and denoted by πk, f , where k is the modular vector and f is a quadratic function, such that k̂ f = 0 and

πg = πk, f =
1
2

Î ∧ k̂ + π f =
1
2

Î ∧ k̂ +
∂ f
∂x

∂

∂y
∧

∂

∂z
+

∂ f
∂y

∂

∂z
∧

∂

∂x
+

∂ f
∂z

∂

∂x
∧

∂

∂y
. (7)

Theorem 3.1 ([8]). Let π1 and π2 be two linear Poisson structures on R3 determined by the compatible pairs (k1, f1)

and (k2, f2) respectively. Then π1 is isomorphic to π2 if and only if there is a T ∈ GL(3) such that

k2 = T k1, f2 = det(T ) f1 ◦ T−1.
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Corollary 3.2. With notations given above, consider the automorphism group of πg and derivation of g, one
has

Aut(πg) = {T | T ∈ GL(3), T k = k, f ◦ T = det(T ) f }, (8)

and

Der(g) ∼= {D | D ∈ gl(3), Dk = 0, D̂ f = (tr D) f }. (9)

Theorem 3.3 ([8]). Any Lie–Poisson structure πk, f on R3 is isomorphic to one of the following standard
forms:

(A) k = 0 (unimodular case), (B) k = (0, 0, 1)T , i.e.,k̂ = ∂
∂z ,

(1) f = 0, (7) f = 0,
(2) f = x2

+ y2
+ z2, (8) f = a(x2

+ y2),
(3) f = x2

+ y2
− z2, (9) f = a(x2

− y2),
(4) f = x2

+ y2, (10) f = x2,
(5) f = x2

− y2,
(6) f = x2,

where a > 0 is a constant.

Theorem 3.4 ([8]). Let Gi , i = 1, . . . , 10 denote the automorphism groups of the Lie–Poisson structures which
corresponds to Case (1) in Theorem 3.3. Then we have

G1 = GL(3),

G2 = SO(3),

G3 = SO(2, 1),

G4 =

{(
λT 0
ξ det T

)
| T ∈ O(2), λ 6= 0, ξ ∈ R2

}
,

G5 =


α β 0

β α 0
γ δ 1

 or

−α β 0
−β α 0
γ δ −1

 | α, β, γ, δ ∈ R, α2
6= β2

 ,

G6 =

{(
a 0
ξ A

)
| A ∈ GL(2), det(A) = a 6= 0, ξ ∈ R2

}
,

G7 =

{(
A 0
ξ 1

)
| A ∈ GL(2), ξ ∈ R2

}
,

G8 =

{(
λT 0
ξ 1

)
| T ∈ SO(2), λ 6= 0, ξ ∈ R2

}
,

G9 =


α β 0

β α 0
γ δ 1

 | α, β, γ, δ ∈ R, α2
6= β2

 ,

G10 =


α 0 0

β α 0
γ δ 1

 | α, β, γ, δ ∈ R, α 6= 0

 .

4. The cohomology groups of 3-dimensional Lie algebras

In this section, g will be a 3-dimensional Lie algebra with modular character k and g∗ is its dual space with
Lie–Poisson structure πk, f , described as in (7), where f is decided by symmetric matrix A.
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Theorem 4.1. For any η ∈ g∗, ω ∈ g∗∧g∗, δ is the coboundary operator of Lie algebra cohomology with coefficients
in its trivial representation, then

δη =
1
2

k ∧ η − 2Φ ◦ Aη, (10)

δω = k ∧ ω. (11)

Proof. By Theorem 2.1, π = 1
2 Î ∧ k̂ + Λg, and

Λg = π f =
∂ f
∂x1

∂

∂x2
∧

∂

∂x3
+

∂ f
∂x2

∂

∂x3
∧

∂

∂x1
+

∂ f
∂x3

∂

∂x1
∧

∂

∂x2
.

So we have

[e1, e2] =
1
2
(〈k, e2〉e1 − 〈k, e1〉e2)+ 2Ae3,

[e2, e3] =
1
2
(〈k, e3〉e2 − 〈k, e2〉e3)+ 2Ae1,

[e3, e1] =
1
2
(〈k, e1〉e3 − 〈k, e3〉e1)+ 2Ae2,

and

〈δη, e1 ∧ e2〉 = −〈η, [e1, e2]〉

= −

〈
η,

1
2
(〈k, e2〉e1 − 〈k, e1〉e2)+ 2Ae3

〉
=

1
2
〈k, e1〉〈η, e2〉 −

1
2
〈k, e2〉〈η, e1〉 − 2〈Aη,Φ(e1 ∧ e2)〉

=

〈
1
2

k ∧ η, e1 ∧ e2

〉
− 2〈Φ ◦ Aη, e1 ∧ e2〉.

After the similar computation of 〈δη, e2 ∧ e3〉 and 〈δη, e3 ∧ e1〉, we have the conclusion that

δη =
1
2

k ∧ η − 2Φ ◦ Aη.

For η1, η2 ∈ g∗, by Leibnitz rule, we have

δ(η1 ∧ η2) = δη1 ∧ η2 − η1 ∧ δη2

=

(
1
2

k ∧ η1 − 2Φ ◦ Aη1

)
∧ η2 − η1 ∧

(
1
2

k ∧ η2 − 2Φ ◦ Aη2

)
= k ∧ η1 ∧ η2 + 2(η1 ∧ (Φ ◦ Aη2)− (Φ ◦ Aη1) ∧ η2)

= k ∧ η1 ∧ η2.

Thus for any ω ∈ g∗ ∧ g∗, δω = k ∧ ω. �

For Lie algebras g listed in Theorem 3.3, we give a detail description of the corresponding 2-cocycles, denoted
by C2(g) ⊂ g∗ ∧ g∗ and exact 2-cocycles, denoted by B2(g) ⊂ g∗ ∧ g∗, which will be used when considering the
classification of linear Poisson structures on R4. Furthermore we give cohomology groups H1(g), H2(g), H3(g) with
coefficients in trivial representation.

Corollary 4.2. (A) k = 0 (unimodular case)

Quadratic function f C2(g) B2(g) H1(g) H2(g) H3(g)

(1) 0 ∀ω 0 R3 R3 R
(2) x2

+ y2
+ z2

∀ω ∀ω 0 0 R
(3) x2

+ y2
− z2

∀ω ∀ω 0 0 R
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Quadratic function f C2(g) B2(g) H1(g) H2(g) H3(g)

(4) x2
+ y2

∀ω αdy ∧ dz + βdz ∧ dx R R R
(5) x2

− y2
∀ω αdy ∧ dz + βdz ∧ dx R R R

(6) x2
∀ω αdy ∧ dz R2 R2 R

(B) k = (0, 0, 1)T , i.e., k̂ = ∂
∂z

Quadratic function f C2(g) B2(g) H1(g) H2(g) H3(g)

(7) 0 αdy ∧ dz + βdz ∧ dx αdy ∧ dz + βdz ∧ dx R 0 0

(8) a(x2
+ y2) αdy ∧ dz + βdz ∧ dx αdy ∧ dz + βdz ∧ dx R 0 0

(9)1 a(x2
− y2), a 6= 1

4 αdy ∧ dz + βdz ∧ dx αdy ∧ dz + βdz ∧ dx R 0 0

(9)2
1
4 (x2
− y2) αdy ∧ dz + βdz ∧ dx α(dy ∧ dz − dz ∧ dx) R2 R 0

(10) x2 αdy ∧ dz + βdz ∧ dx αdy ∧ dz + βdz ∧ dx R 0 0

where α, β are arbitrary constants.

Proof. First consider H3, by Theorem 4.1, for ∀ω ∈ g∗ ∧ g∗, δω = k ∧ ω. So in the unimodular case k = 0, this
implies that δω = 0. So θ ∈ ∧3 g∗ is exact if and only if θ = 0, and this implies that H3

= R. If k = (0, 0, 1),
∀ θ ∈ ∧3 g∗ is exact, so H3

= 0.
Next consider H1, there is no exact chain and η ∈ g∗ is closed if and only if

1
2

k ∧ η − 2Φ ◦ Aη = 0

by Theorem 4.1. If k = 0, Aη = 0, so the dimension of the first cohomology group is 3 − order(A) and we have the
conclusions listed above. If k = (0, 0, 1), it is a little complicated but straightforward however and we leave it to the
interest of the reader.

Finally we consider H2, in the case that k = 0, all of 2-chains are 2-cocycles by Theorem 4.1. In the case that
k = (0, 0, 1), ω ∈ ∧2 g∗ is closed if and only if ω has the form ω = αdy ∧ dz + βdz ∧ dx by Theorem 4.1, where
α, β ∈ R. ω ∈ ∧2 g∗ is exact if and only if

ω =
1
2

k ∧ η − 2Φ ◦ Aη

for some η ∈ g∗ by Theorem 4.1, the conclusion is straightforward. �

Remark 4.3. In fact, the first cohomology group H1(g) relate to the dimension of derived algebra [g, g] of 3-
dimensional Lie algebra g, more precisely, dim(H1(g)) = 3 − dim([g, g]). In the unimodular case, dim([g, g]) =
order(A), however it is not true if the modular vector is not zero (see the case f = 1

4 (x2
− y2)).

The next theorem and corollary give some description of the derivation which will be used in the next section when
we consider the extension of a Lie algebra by a derivation.

Theorem 4.4. Let g be one of the Lie algebras listed in Theorem 3.3. D is a derivation of Lie algebra g if and only if

D∗k = 0, D A + AD∗ = tr(D)A. (12)

And D is an inner derivation if and only if there exists a skew-symmetric transformation B : g→ g∗ such that

D =
(

2A +
1
2

k
)

B, (13)

where k : g∗ −→ g denotes the skew-symmetric transformation decided by Φ−1k.
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Proof. Since D is a derivation, by Corollary 3.2 we have

D∗k = 0, D̂∗ f = tr(D) f,

and this implies that

D∗k = 0, D A + AD∗ = tr(D)A.

If D is an inner derivation, there exists a ξ ∈ g, such that D = ad(ξ) and DX = ad(ξ)(X) = [ξ, X ]. Furthermore,

[ξ, X ] = c.p.{(〈ξ, e1
〉〈X, e2

〉 − 〈ξ, e2
〉〈X, e1

〉)[e1, e2]}

= c.p.

{
(〈ξ, e1

〉〈X, e2
〉 − 〈ξ, e2

〉〈X, e1
〉)

(
1
2
(〈k, e2〉e1 − 〈k, e1〉e2)+ 2Ae3

)}
= c.p.

{
1
2
Φ−1(k ∧ (〈ξ, e1

〉〈X, e2
〉 − 〈ξ, e2

〉〈X, e1
〉)e3)

}
+ 2AΦ(ξ ∧ X)

=
1
2
Φ−1(k ∧ (Φ(ξ ∧ X)))+ 2AΦ(ξ ∧ X),

where c.p.{} means the cyclic permutations of e1, e2, e3. So we have

D(·) =
1
2
Φ−1(k ∧ (Φ(ξ)(·)))+ 2AΦ(ξ)(·)

=

(
2A +

1
2

k
)

B(·),

where B : g → g∗ is the skew-symmetric transformation decided by Φξ and k : g∗ → g is the skew-symmetric
transformation decided by Φ−1k. �

Now we can give the form of the derivation and the inner derivation via the standard form of Lie algebras listed
in Theorem 3.3. However inner derivation will be of no use when we consider the extension of a Lie algebra by a
derivation.

Corollary 4.5. (A) k = 0 (unimodular case)

Quadratic function f Derivation Inner derivation H1(ad; g)

(1) 0 ∀D ∈ gl(3) 0 R9

(2) x2
+ y2

+ z2 D ∈ o(3) D ∈ o(3) 0

(3) x2
+ y2

− z2 D ∈ o(2, 1) D ∈ o(2, 1) 0

(4) x2
+ y2

 α β γ

−β α δ

0 0 0

 α = 0 R

(5) x2
− y2

α β γ

β α δ

0 0 0

 α = 0 R

(6) x2

(
tr(D) ξ

0 D

)
, ξ ∈ R2, D ∈ gl(2) D = 0 R4

(B) k = (0, 0, 1)T , i.e., k̂ = ∂
∂z
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Quadratic function f Derivation Inner derivation H1(ad; g)

(7) 0

α β γ

δ ε ε

0 0 0


ε o γ

0 ε ε

0 0 0

 R3

(8) a(x2
+ y2)

 α β γ

−β α δ

0 0 0


 α 4aα γ

−4aα α δ

0 0 0

 R

(9)1 a(x2
− y2), a 6= 1

4

α β γ

β α δ

0 0 0


 α 4aα γ

4aα α δ

0 0 0

 R

(9)2
1
4 (x2
− y2),

α β γ

β α δ

0 0 0


α α γ

α α γ

0 0 0

 R2

(10) x2

α β γ

0 α δ

0 0 0


α 4α γ

0 α δ

0 0 0

 R

where a > 0, α, β, γ, δ, ε, ε ∈ R are arbitrary constants.

Proof. The proof is almost straightforward and we only give the proof of the Case (2). Any derivation D satisfies
D A + AD∗ = tr(D∗)A. Multiply A−1 at the right-hand side, we have D = −AD∗A−1

+ tr(D∗)I , and this implies
that

tr(D) = −tr(D)+ 3tr(D) H⇒ tr(D) = 0.

Then D = −AD∗A−1, this implies that D is skew-symmetric. To prove that D is an inner derivation, we only need
to say that −D∗A−1 is skew-symmetric. Notice that D A + AD∗ = 0 means D∗A−1

+ A−1 D = 0, this is just the
condition that −D∗A−1 is skew-symmetric. �

5. The classification of linear Poisson structures on R4

With the above preparations, we can see that the procedure of classification of Lie–Poisson structures on R4 can
be split into four steps by Theorem 3.3, Corollaries 4.2 and 4.5 as follows.

(1) Take a standard form of Lie–Poisson structure πg from the list in Theorem 3.3(A).
(2) Consider all the isomorphism classes of the extension, central extension and D-extension of the corresponding Lie

algebra.
(3) Consider the isomorphism of the extension of two different Lie algebras.
(4) The Lie–Poisson structures corresponding to the above Lie algebras give the classification of linear Poisson

structures on R4.

In fact Step (2) above is the most difficult and complicated one. If this is done, Step (3) is almost straightforward
however. The following proposition gives a detail description of central extensions and D-extensions of Lie algebras
listed in Theorem 3.3 and of which the first part will be used in the classification of 4-dimensional Lie–Poisson
structures and the whole proposition will be of great importance when we consider affine Poisson structures.
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Proposition 5.1. With the same notations given above, let g be one of the 3-dimensional Lie algebras listed in
Theorem 3.3, any of its extension, central extension which is decided by 2-cocycles ω in trivial representation and
D-extension which is decided by derivations, is isomorphic to one of the following forms:

(A) k = 0 (unimodular case)

Quadratic function f 2-cocycles ω Derivation D

(1) 0 0 and dx ∧ dy 0,

0 1 0
0 0 1
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

 α 1 0
−1 α 0
0 0 β


1 0 0

0 0 1
0 0 0

 ,

1 1 0
0 1 0
0 0 β

 ,

1 0 0
0 α 0
0 0 β

 ,

1 1 0
0 1 1
0 0 1


(2) x2

+ y2
+ z2 0 0

(3) x2
+ y2

− z2 0 0

(4) x2
+ y2 0 and dx ∧ dy 0 or

1 0 0
0 1 0
0 0 0


(5) x2

− y2 0 and dx ∧ dy 0 or

1 0 0
0 1 0
0 0 0


(6) x2 0 and dx ∧ dy 0,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 1 0
0 0 −1

 ,

0 0 0
0 0 1
0 −1 0

,

2 0 0
0 1 α

0 −α 1

 ,

2 0 0
0 1 1
0 0 1

 ,

1 0 0
0 α 0
0 0 1− α


(B) k = (0, 0, 1)T , i.e., k̂ = ∂

∂z

Quadratic function f 2-cocycles ω Derivation D

(7) 0 0 0,


0 1 0

0 0 0

0 0 0

 ,


1 1 0

0 1 0

0 0 0

 ,


1 0 0

0 α 0

0 0 0

,


0 α 0

−α 0 0

0 0 0

 ,


1 α 0

−α 1 0

0 0 0


(8) a(x2

+ y2) 0 0 and

I2×2 0

0 0
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Quadratic function f 2-cocycles ω Derivation D

(9)1 a(x2
−y2), a 6= 1

4 0 0 and

I2×2 0

0 0



(9)2
1
4 (x2
− y2), 0 and dx ∧ dz 0,

I2×2 0

0 0

 ,


0 1 0

0 0 0

0 0 0



(10) x2 0 0 and


0 0 1

0 0 0

0 0 0


where a > 0, α, β ∈ R are constants.

Proof. Throughout the proof, 2-chain ω = αdy ∧ dz + βdz ∧ dx + γ dx ∧ dy will be denoted by ω = (α, β, γ ).
(1) Assume that ω1 = (α1, β1, γ1), ω2 = (α2, β2, γ2), where α1, β1, γ1 are not zero at the same time and so are

α2, β2, γ2, and A is a matrix of which the adjoint matrix Ã satisfies Ãω2 = ω1, then A =
(

A 0
0 1

)
is the isomorphism

from gω1 to gω2 . In particular, we can choose ω = dx ∧ dy as the standard form.
(2) and (3) follows from Corollaries 4.2 and 4.5.
(4) and (5). By Corollary 4.2 and the fact that if ω1−ω2 is exact, gω1 is isomorphic to gω2 , we only need to consider

the case ω = γ dx ∧ dy, where γ 6= 0. Let ω1 = γ1dx ∧ dy and ω2 = γ2dx ∧ dy, γ1 6= 0, γ2 6= 0, gω1 is isomorphic

to gω2 is obvious since A =
(

I3×3 0
0

γ2
γ1

)
is the isomorphism and we can choose ω = dx ∧ dy as the standard form.

By Corollary 4.5 and the fact that if D1 − D2 is exact, gD1 is isomorphic to gD2 , we only need to consider the case

D =
(

d · I2×2 0
0 0

)
, where d 6= 0. gD1 is isomorphic to gD2 is obvious since D =

(
I3×3 0

0
d1
d2

)
is the isomorphism. And

we can choose D =
(

I2×2 0
0 0

)
as the standard form.

(6) As in (4) and (5), we only need to consider the case ω = (0, β, γ ), assume that ω1 = (0, β1, γ1) and

ω2 = (0, β2, γ2). Let B ∈ GL(2) that satisfies Bω2 = ω1, then A =

 3√det(B) 0 0

0
1

3√det(B)
B 0

0 0 1

 is the isomorphism

from gω1 to gω2 . As for D-extension, we only need to consider the case D =
(

tr(D) 0
0 D

)
by Corollary 4.5, and gD1 is

isomorphic to gD2 if and only if D1 is similar to the matrix that is nonzero multiples of the matrix similar to D2. In

fact, if D1 = d B
−1

D2 B for some B ∈ GL(2), then B =
(

det(B) 0 0
0 B 0
0 0 d

)
is the isomorphism from gD1 to gD2 .

The proof of the triviality of central extensions in the Cases (7), (8), (10) and in the Case (9)1 are same because of
Corollary 4.2. In the Case (9)2, if the 2-cocycle ω is exact, from Corollary 4.2, we have α = −β. So we only need to

consider the case ω = β ∂
∂z ∧

∂
∂x and gω1 is isomorphic to gω2 is obvious since B =

(
I3×3 0

0
β2
β1

)
is the isomorphism,

where ω1 = β1
∂
∂z ∧

∂
∂x , ω2 = β2

∂
∂z ∧

∂
∂x .

The proof of the determination of derivation D in Case (B) when k = (0, 0, 1)T listed in Theorem 3.3 is almost
the same as the proof of the unimodular case and we leave it to the interest of the reader. �

Now combine Proposition 2.3, Theorem 3.3 and 5.1, we obtain the following theorem that gives the classification
of Lie–Poisson structures on R4.
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Theorem 5.2. Any 4-dimensional Lie algebra is isomorphic to one of the following forms which are considered as the
extension by a derivation of some unimodular 3-dimensional Lie algebra listed in Theorem 3.3(A).

Quadratic function f Derivation D

(1) 0 0,

0 1 0
0 0 1
0 0 0

 ,

1 0 0
0 0 1
0 0 0

 ,

1 1 0
0 1 1
0 0 1

,

1 1 0
0 1 0
0 0 α

 ,

1 0 0
0 β 0
0 0 γ

 ,

 δ 1 0
−1 δ 0
0 0 ε


(2) x2

+ y2
+ z2 0

(3) x2
+ y2

− z2 0

(4) x2
+ y2 0 and

1 0 0
0 1 0
0 0 0


(5) x2

− y2 0 and

1 0 0
0 1 0
0 0 0


(6) x2 0,

0 0 0
0 1 0
0 0 −1

 ,

0 0 0
0 0 1
0 −1 0

 ,

2 0 0
0 1 1
0 0 1

,

2 0 0
0 1 ε

0 −ε 1

 ,

1 0 0
0 ζ 0
0 0 1− ζ


where α, β, γ, δ, ε, ε, ζ ∈ R are arbitrary constants.

Proof. By Proposition 2.3, we know that any 4-dimensional Lie algebra is the extension of some 3-dimensional
unimodular Lie algebra and Proposition 5.1 gives the classification of the extension of a fixed Lie algebra. The only
thing left now is to decide the isomorphism of the extension of different Lie algebras, however this is easily done.
This completes the proof. �

By Proposition 5.1 and the statement at the beginning of this section, we classify all of the affine Poisson structures
on R3.

Theorem 5.3. On R3, any affine Poisson structure is isomorphic to one of the following forms:
(A) k = 0 (unimodular case) (B) k = (0, 0, 1)T , i.e., k̂ = ∂

∂z

Quadratic function f Affine Poisson structure Quadratic function f Affine Poisson structure

(1) 0 ∂
∂x ∧

∂
∂y (7) 0 πk, f

(2)(3) x2
+ y2

± z2 π f (8) a(x2
+ y2) πk, f

(4) x2
+ y2 ∂

∂x ∧
∂
∂y + π f (9)1 a(x2

− y2), a 6= 1
4 πk, f

(5) x2
− y2 ∂

∂x ∧
∂
∂y + π f (9)2

1
4 (x2
− y2), ∂

∂z ∧
∂
∂x + πk, f

(6) x2 ∂
∂x ∧

∂
∂y + π f (10) x2 πk, f

where a > 0 is a constant.
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As an application of the classification of 4-dimensional Lie algebras, we give an example to describe conformal
symplectic structure of corresponding linear Jacobi structure obtained by the decomposition of linear Poisson
structures on R4. Pursuing this geometric approach of Jacobi structure is very interesting and we have another paper to
study it. For more details about Jacobi structure, conformal symplectic structure and contact structure, please see [5,7].

Example 5.4. Consider the 4-dimensional Lie algebra decided by f = x2 and the derivation D =


1
2

0 0

0
1
4

0

0 0
1
4

, the

corresponding linear Poisson structure is

π = 2x1
∂

∂x2
∧

∂

∂x3
+

1
2

x1
∂

∂x1
∧

∂

∂x4
+

1
4

x2
∂

∂x2
∧

∂

∂x4
+

1
4

x3
∂

∂x3
∧

∂

∂x4

and k = D(π) = (0, 0, 0, 1), so the corresponding Jacobi structure is

(E,Λ) =

(
1
3

∂

∂x4
, 2x1

∂

∂x2
∧

∂

∂x3
+

1
6

x1
∂

∂x1
∧

∂

∂x4
−

1
12

x2
∂

∂x2
∧

∂

∂x4
−

1
12

x3
∂

∂x3
∧

∂

∂x4

)
.

After some straightforward computations we have, if x1 6= 0, the character distribution is 4-dimensional and the
2-form Ω , inverse to the bi-vector Λ, is

Ω =
1
4

x3

x2
1

dx1 ∧ dx2 +
1
4

x2

x2
1

dx3 ∧ dx1 +
6
x1

dx4 ∧ dx1 +
1

2x1
dx3 ∧ dx2

and ω = iEΩ = 2
x1

dx1. So we have

dΩ = −ω ∧ Ω =
1
x2

1
dx1 ∧ dx2 ∧ dx3.

This shows that (Ω , ω) is the the conformal symplectic structure on the leaf.
If x1 = 0, it is evident that the character distribution through (0, x0

2 , x0
3 , x0

4) is 2-dimensional if x0
2 , x0

3 are not
zero at the same time and the leaf is just the half-plane decided by x4-axis and the point (0, x0

2 , x0
3 , x0

4) with x4-axis
omitted. The character distribution through (0, 0, 0, x0

4) is 1-dimensional and the leaf is just x4-axis. �
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